Role of RNase H1 in DNA repair: removal of single ribonucleotide misincorporated into DNA in collaboration with RNase H2
نویسندگان
چکیده
Several RNases H1 cleave the RNA-DNA junction of Okazaki fragment-like RNA-DNA/DNA substrate. This activity, termed 3'-junction ribonuclease (3'-JRNase) activity, is different from the 5'-JRNase activity of RNase H2 that cleaves the 5'-side of the ribonucleotide of the RNA-DNA junction and is required to initiate the ribonucleotide excision repair pathway. To examine whether RNase H1 exhibits 3'-JRNase activity for dsDNA containing a single ribonucleotide and can remove this ribonucleotide in collaboration with RNase H2, cleavage of a DNA8-RNA1-DNA9/DNA18 substrate with E. coli RNase H1 and H2 was analyzed. This substrate was cleaved by E. coli RNase H1 at the (5')RNA-DNA(3') junction, regardless of whether it was cleaved by E. coli RNase H2 at the (5')DNA-RNA(3') junction in advance or not. Likewise, this substrate was cleaved by E. coli RNase H2 at the (5')DNA-RNA(3') junction, regardless of whether it was cleaved by E. coli RNase H1 at the (5')RNA-DNA(3') junction in advance or not. When this substrate was cleaved by a mixture of E. coli RNases H1 and H2, the ribonucleotide was removed from the substrate. We propose that RNase H1 is involved in the excision of single ribonucleotides misincorporated into DNA in collaboration with RNase H2.
منابع مشابه
Altered spatio-temporal dynamics of RNase H2 complex assembly at replication and repair sites in Aicardi-Goutières syndrome.
Ribonuclease H2 plays an essential role for genome stability as it removes ribonucleotides misincorporated into genomic DNA by replicative polymerases and resolves RNA/DNA hybrids. Biallelic mutations in the genes encoding the three RNase H2 subunits cause Aicardi-Goutières syndrome (AGS), an early-onset inflammatory encephalopathy that phenotypically overlaps with the autoimmune disorder syste...
متن کاملRNase H2-initiated ribonucleotide excision repair.
Ribonucleotides are incorporated into DNA by the replicative DNA polymerases at frequencies of about 2 per kb, which makes them by far the most abundant form of potential DNA damage in the cell. Their removal is essential for restoring a stable intact chromosome. Here, we present a complete biochemical reconstitution of the ribonucleotide excision repair (RER) pathway with enzymes purified from...
متن کاملExcision of misincorporated ribonucleotides in DNA by RNase H (type 2) and FEN-1 in cell-free extracts.
Misincorporated ribonucleotides in DNA will cause DNA backbone distortion and may be targeted by DNA repair enzymes. Using double-stranded oligonucleotide probes containing a single ribose, we demonstrate a robust activity in human, yeast, and Escherichia coli cell-free extracts that nicks 5' of the ribose. The human and yeast extracts also make a subsequent cut 3' of the ribonucleotide releasi...
متن کاملCrystal Structures of RNase H2 in Complex with Nucleic Acid Reveal the Mechanism of RNA-DNA Junction Recognition and Cleavage
Two classes of RNase H hydrolyze RNA of RNA/DNA hybrids. In contrast to RNase H1 that requires four ribonucleotides for cleavage, RNase H2 can nick duplex DNAs containing a single ribonucleotide, suggesting different in vivo substrates. We report here the crystal structures of a type 2 RNase H in complex with substrates containing a (5')RNA-DNA(3') junction. They revealed a unique mechanism of ...
متن کاملPCNA directs type 2 RNase H activity on DNA replication and repair substrates
Ribonuclease H2 is the major nuclear enzyme degrading cellular RNA/DNA hybrids in eukaryotes and the sole nuclease known to be able to hydrolyze ribonucleotides misincorporated during genomic replication. Mutation in RNASEH2 causes Aicardi-Goutières syndrome, an auto-inflammatory disorder that may arise from nucleic acid byproducts generated during DNA replication. Here, we report the crystal s...
متن کامل